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We consider one-dimensional grand-canonical continuum Gibbs states 
corresponding to slowly decaying, superstable, many-body interactions. Absence 
of phase transitions, in the sense of uniqueness of the tempered Gibbs state, is 
proved for interactions with an Nth body hardcore for arbitrarily large N. 

KEY WORDS: Gibbs state; pure phase; one-dimensional continuum; long 
range interaction. 

1. I N T R O D U C T I O N  

The presence or absence of phase transitions has been studied for a wide 
variety of one-dimensional classical statistical mechanical models. The 
majority of papers on this subject have focused on lattice or hard-core 
systems, due to the technical difficulties which arise in continuum models 
without hard-core restrictions (see, however, Campanino et al., (1) 
Suhov, t15) Klein~l~ The principal condition on the interaction for the 
absence of phase transitions, in lattice and hard-core models, is that the 
total interaction energy of particles distributed along the negative real axis 
with particles distributed along the positive axis must be finite (see, for 
example, Dobrushin, (2~ Gallavotti et al., (6~ Gallavotti et al., (7) and 
Ruelle~12)). In the case of lattice models, Dyson (3,4/ and Frohlich et al. (5~ 
have shown that this condition cannot be substantially weakened. Further 
insight into this question has also been obtained by Simon. (141 

In this paper we study perturbations V+ I~ N of superstable, slowly 
decaying, many-body interactions V, where ~ x  = Oe for configurations 
with more than N particles in any interval of length one, and ~ N  = 0 
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otherwise. If N =  2, V+ ~N is a hard-core interaction in the usual sense. If 
N is extremely large, so that, for example, N particles in any interval of 
length one corresponds to a density which greatly exceeds that of any 
known form of matter, one would not expect physically significant differen- 
ces in the behavior of systems governed, respectively, by V and V+ q5 N. 
We prove in Section 3 that if a condition, analogous to that imposed on 
lattice and hard-core models, holds for V, then the tempered Gibbs state 
for V+ ~ N  is unique at all temperatures and fugacities, independent of N. 
The condition is, roughly speaking, that for any given maximum uniform 
density of particles on the line, the energy of interaction of particles on the 
negative real line with particles on the positive real line must be finite (see 
Condition 2.2 and Remark 2.1 below). 

This extends results of Dobrushin ~2) and the author. (1~ The method of 
proof is based on the ideas of Dobrushin given in Ref. 2. 

2. NOTATION A N D  DEF IN IT IONS 

For a bounded Borel set A of the real line, let X(A) be the set of all 
locally finite subsets (configurations) of A. B A denotes the a field on X(A) 
generated by all sets of the form {s E J((A): Fs c~ B[ = m }, where B runs over 
all bounded Borel subsets of A, m runs over the set of nonnegative integers, 
and [ "1 denotes cardinality. Let XF be the set of configurations in X(N) of 
finite cardinality, and XN(A ) the set of configurations in X(A) of car- 
dinality N. 

Let T:AN--+XN(A) be the map which takes the ordered N-tuple 
(xl,..., XN) to the unordered set {xl ..... XN}. For N =  1, 2, 3,... let dNx be the 
projection of n-dimensional Lebesgue measure onto XN(A) under the map 
T. The measure d~ assigns mass 1 to X0(A)={O}. Define as in 
Refs. 10, 11, 

oe Z n 

V A(dX) = r, ~= o ~" d'x (2.1) 

where z is chemical activity. 
We will consider Bu-measurable many-body interactions V: XF--+ 

( -- 0% -- oO ] of the form 

N = I  y c x  
lYl = N  

(2.2) 

where @ N : X N ( ~ )  ---+ ( - - 0 0 , - [ - 0 0 ]  is called an N-body interaction. As in 
Preston (11) we define the B~-measurable set  R A ~ X ( ~  ) so that V(xts) 
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represents the energy of the configuration x eX(A),  assuming the con- 
figuration s e R A n X(A"). The finite volume Gibbs state I~A(dX] s) for the 
bounded Borel set A (with positive Lebesgue measure), interaction V, 
inverse temperature fl, chemical activity z, and external configuration 
S C R A N X(A c) is given by 

#A(dX[ s) = exp[- -- f lV(xls)  ] V A(dX) (2.3) 
ZA(S) 

where the constant ZA(S) makes t~A(dX]s) a probability measure. If V 
satisfies Condit ion2.1 below, then I<~ZA(S)<OQ. If SCRA, define 
I~A(dxls) to be the zero measure. 

Definition 2.7. For a given interaction V, let D = { s ~ X ( ~ ) :  
V(y)<  oo for all y e s  with lYl < oo} and let 

Um= {s~X(~) :  Isn [ - L ,  L)I <2Lm for every integer L > 0 } n D  

Let Uo~=Um>l Urn. 
We will refer to the following two conditions on the interaction V, in 

the next section. 

Condition 2. I. (a) V is superstable. (13) 

(b) For any bounded Borel set A c JR, any x ~ X(A)c~ U~, and any 
m ~  1, ]VA(XIS ) -- VA(X]SN I- -k ,  k])] ~gm(k) lxl, where gm(k) converges 
uniformly to zero for all s E Um C~ X(A c), as k -+ oo. 

(c) 

N>~2 y ~ x ~ s  
TYl = N 

y n s v ~ f )  
y r ~ x r  

for some c > 0 and all disjoint x, s ~ XF. 

In Condition 2.2 below, for y ~ X ( ~ ) ,  let y + = y n [ 0 ,  oe) and y = 
yn(-oo, O). 

Condition 2.2. (a) ~bN is translation invariant for each N~> 1. 

(b) There exists a decreasing function era: [0, o o ) - - , [ 0 , ~ ) ,  
depending on m, such that ~m(r) -~ 0 as r ~ ~ ,  and for any x ~ Urn, 

E ~ ~N(y) ~<r 
N ~ 2  Y ~ M x ( r )  

where N M x ( r ) = { y c x : l y l = N ,  y + r  y - v a 0  and maxy,~y+yj~y 
tY , -  Yfl >~r}. 
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Definition 2.2. 

= t oo 
~O N(X) 

0 

For a given interaction V, let 

V N ( x )  = V ( x )  Av 

For a configuration x = (x~ ..... XN) ~ X N ( ~ ) ,  let 

if max [xi-xj[  < 1 
0 

otherwise 

ON(Y) (2.4) 
y ~ x  

lyl = N  

We also let U N and U N (from Definition 2.1) and Z](s)  from (2.3) 
correspond to V N. 

Remark 2.1. Condition 2.1 was required in Ref. 9 for existence of 
Gibbs states for V N. Condition 2.2(a) is not essential, but without it Con- 
dition 2.2(b) would be harder to state. Condition 2.2(b) can be understood 
Foughly in the following way: For any prescribed uniform density and any 
configuration in N not exceeding that density, the energy of interaction of 
particles in ( -  ~ ,  0) with those in [0, ~ )  is finite. In the case of a pair 
interaction V(x) = ~.~ 02([x~ - xj t  ) for which 

1~2(txl)q ~< c Ixl 

when [x] is sufficiently large, V satisfies Condition 2.2 for any ~ > 2. Con- 
dition 2.1 is also satisfied by V, if in addition, V is superstable and 
infx>o ~2(x) > -oo.  

Remark 2.2. If V satisfies Condition 2.1 and Condition 2.2, then V x 
also satisfies Condition 2.1 and Condition 2.2. Condition 2.2(b) can be 
simplified for V u by replacing ~m with ~X, since U~=  U ~  U~ for all 
m~>l. 

Let {T/~A} denote the specification associated with fl, z, and V (see 
Ref. 11, p. 16) defined by 

~A(A, S)= f A, I~A(dxIsC~ V c) (2.5) 

where A e B ~ ,  A ' =  { x e X ( A ) : x w  (sc~AC)sA},  and seX(A) .  

Definition 2.3. A probability measure a on (X(N), B~) is a Gibbs 
state for the specification {ha} if 

o-[-~(A, s)]  = G(A) 

for every A E BR and every bounded Borel set A c R of positive Lebesgue 
measure. If in addition, a(U~) = 1, then a is a tempered Gibbs state. 
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Definition 2.4. For an interaction V, Borel sets A = A with positive 
finite Lebesgue measures, and s e U~,  the finite volume Gibbs density 
rA(xIs) is given by 

rA(x]s)=IX exp[--[3V(xu yls:~71~)] V~\A(dy ) (2.6) 
(~\~ Z~(s :~ 71 ~) 

Definition 2.5. A function f on X(R) is a cylinder function if 
f(s)=f(sc~A) for some bounded set A c R  and all seX(E). A subset 
A ~ X(R) is a cylinder set if the characteristic function for A is a cylinder 
function. 

Note that i f f  is a BA-measurable function on X(A), then we may 
regard f as a B~-measurable cylinder function on X(R) by defining 
f (s)=f(snA) for seX(R). In this case 

~(f,  s l -  I f (x)~(ax  I s)= Ix( . f ix)  rJ(xlsl v.idx) (2.7) 

3. U N I Q U E N E S S  OF T H E  G I B B S  STATE 

We assume throughout that an interaction V is given which satisfies 
Condition 2.1 and Condition 2.2 of the last section. 

Let (X, Bx) be a measurable space and let #1 and kl2 be probability 
measures on (X, Bx). The variation distance between the measures #~ and 
/~2 is defined as 

P(#1,/~z) = sup I /~I(A)-#2(A)] (3.1) 
A ~ B x  

If #1 and #2 have respective densities Pl and P2 with respect to a finite 
measure v on X, then defining P(Pl, P2) = P(/~, #2), we have 

P(Pl Pz) = Jx ] P l ( X ) -  pz(x)r v(dx) = 1 - min[p l (x ) ,  p2(x)]  v(dx) (3.2) 

The following lemma was proved by Dobrushin. (2) 

Lemma 3.1. 
j = 1, 2, 3 and let 

(Dobrushin). Let (Xs, Bs, vj) be a measure space for 

3 

(x, B~, ~)= [I (~, Bj, ~j) 
j ~ l  

be the product measure space with measure v = vl x v2 x %. Let p l ( . )  and 
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p2(.) be densities with respect to v for probability measures on (X, Bx). 
Consider the marginal densities 

p~(x~) = f f  p~(x~, x~, x3) v~(clx~) v~(clx~) 

p],2(X1, X2) = f pi(x1, X2, X3) v3(dx3) for i =  1, 2 

and the similarly defined densities pi2(x2),pi3(x3),P],3(xl ,  x3) , and 
p~,3(X2, X3) for i =  1, 2. Suppose there exist conditional densities 
p](x~ ix2, x3) and p~/2(xl Lx2) for which 

pi(xl, X2 ' X3)=p](x I IX2, X3 ) i P2,3(X2, X3) 
p],2(Xl, xz)=p]/z(xl Ix2)piz(X2) ( i =  1, 2) 

Then 

where 

lo(pl, p l  2) ~ ~ 1 2 oP(P2, P2) + a0[1 -- p(p~, p~)] 

c~ o=  sup p(p~[('lx2, x3), p~('l~2, x3)3 
Xj,xj~ Xj 
j=  1,2 

~o = sup p[p~('lx2, x~),p~('lx~,~3)3 
x2 ~ X2 

x3,x3 ~ )(3 

As in Ref. 2, uniqueness of the Gibbs state aN for the interaction V N 
given in Definition 2.2 holds provided 

lira sup pEr~ n,n3('ls), 1 rE . . . .  3('1 t)] = 0 (3.3) 
n ~ oo s,t E U N 

for all sufficiently large finite intervals I c  ~, where r~ n,n3('l') corresponds 
to V u via Definition 2.4. 

We will use Lemma 2.1 to establish (3.3). 
Let an interval (a ,c ]  be given and let s l , s z ~ U ~  satisfy 

$1('-'~(C, 00)=$2('~(C, 00 ). Assume n is large enough so that [ - n , n ] ~  
(a, c], and define b = (a + c)/2. In the language of Dobrushin's lemma we 
make the following identifications 

( X l ,  O l ) =  [ X ( ( b ,  c ] ) ,  n ( b , c ] ]  

(X2, B2)= [X((a, b]), B(a,b]] (3.4) 

(X3, B3)-- [ -X( [ -  n, a]),  B E . . . .  3] 
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Given a configurat ion x e X(N), let 

xl  = x c~ (b, c],  x2 = x c~ (a, b] ,  

and 

For  i = 1, 2, let 

x3-~ x ~  [--n, a ] 

V = Y[ n,a] X Y(a,b] X Y(b,c] 

p ' ( x ~ ,  x~, x~)=  r[-.":;~(x~, x~, x~ Is,) (3.5) 

and 

where 

c~ = sup{p[pl~(. [ x2, x3), P~('I ~2, ~3)3: 

X 2 U x 3 ~ U N , y c 2 U Y c 3 c U N , x j , s  for j =  1,2} (3.1o) 

= sup {PIP1(" [ x2, x3), P~('I x2, ~3)]: x2 ~ X2, X3, 2~ 3 E X 3 

N N and x 2 w x 3 e U o ~ , x 2 w f 3 e U o ~ }  (3.11) 

I . .emma 3.2.  For  any integer N~>2, the following inequality holds 
for the interaction V N 

where ~//N(')  is given by Condi t ion 2.2 and ~ is given by (3.11). 

ProoL Since the distr ibution with density .(b,~j(. [ tg) is the restriction "(b,n]~ 
of the distribution with density rl~i~](.lt~) onto  a smaller a algebra, it 
follows that  

[-r(b,c] {.  r(b,c] ( .  [ (b n] r(b,n]( PL'(b,n3, it1), "(b,.3~ , tz)]<~P[r(d,.l('ttl), "It2)] (3.12) "(b,n]~ 

It follows as in Ref. 2 that  for i = 1, 2 

p~(xl) = ~(b,c~ t.. "E . . . .  l t ~  I si) (3.6) 

p~(x2) = ,(~.b3 t-~ .~ . . . .  1~2  Is,) (3.7) 

p~(xl[xz,  x3)=,(b'Cl[Xl[X2WX3W(si\[--n,b])]  (3.8) "(b,n] 

Remark 2.7. For  the probabil i ty densities just  defined, the con- 
clusion of Lemma 3.1 can be modified, with no change in Dobrushin 's  
proof, so that  

P(Pl, P~) <~ c~p(p~, p~) + a[1 - p(p~, p~)]  (3.9) 
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for any tl, t2 ~ U u. Combining (3.2) and (3.11) with (3,12) gives 

]exp[-flVJV(ylx2 w t l )]  
~<<'�89 fx((b,,3I Z~b,n3(x2wtl) 

exp[--f lVN(ylx2w t2)] V(b,3(dy ) (3.13) 
z ,.l(x2 t2) 

where the supremum is taken over the same set of configurations as in 
(3.14) below. From Lemma 3.3 of Ref. 8, the right side of (3.13) is bounded 
by 

1-fl sup{ I VN(T IX2 k) tl)-- VN(T [X2 L) t2)I: tiU x2 t,3 fl E U N 

t in (a ,n]=O for i =  1,2, and tlc~(n, oe)=t2c~(n, oo)} 
(3.14) 

By Condition 2.2 and Remark 2.2, the above expression is bounded by 
fl@N(b- a)= fl@u(C- b). This concludes the proof. 

[ .omma 3.3. For any N>~ 2, n >~ b + 1, there exists hi > 0 such that 

exp[-- f lvN(ojk3yls2)]>/hlexp[-- f lvN(Oj~yls l)]  (3.15) 
zL,,1(<) 

where J =  (b, b +  1], 0j is the empty configuration in J, and 
y6X( (b+  1, n])c~ U N is arbitrary. Furthermore, hi depends only on fl, z, 
and N. 

ProoL From Lemma 2.1 of Ref. 9, for any YleX(J)  c~ UN~, there 
exists a constant D > 0 depending only on J and N such that if y w si e uN~, 

VN(yl I SiW y)>l --D [yxl >~ - D N  (3.16) 

Since VN(ylwyls2)= vN(OjuyIs2)+ VN(yl [yL) s2), we get 

vN(oj W y [ s2) -- VN(yl W y I S2) <~ DN (3.17) 

From (3.17) it follows that 

fx(J) fX((b+ 1,n])exp[ --flvN(osU y ] s2)] vj(dyl) v(#+ 1..](dy) 

>~ exp[ - f l D N ]  fx(g)fX((b+ 1,.3)exp[ --fiVN(yl W y ] S2)] vg(dyl) v(b + l,.,](dy) 

(3.18) 



One-Dimensional Gibbs States for Slowly Decaying Interactions 215 

Since Y(b,n] ~-~ Vj N V(b + 1,n], w e  have 

fx((b+ e x p [  --BgN(~jk,.) y I $ 2 ) ]  1,n](dy) Y(b+ 
1,hi) 

>~ exp[- -  flDN](vj[X(J)])-I Z~,,?(s2) 

= exp[ - f l D N -  z] Z~,,l(s2) (3.19) 

From Condition 2.2 we also have 

I VX(Oj~ y l s 2 ) -  vN(Oj~ y[sl)l ~2~//x(1) 

and consequently 

exp [ - fi VN(0j u y I s2 ) ] >~ exp [ - 2fi~b N( 1 ) ] exp [ -- fl vN(oj  t,J J? I S l ) ] ( 3.20 ) 

Combining (3.19) and (3.20) gives 

/, 

Z~..?(sl) ~> Jx((b + 1,nn/exp[ - - f l vN(o j  k.) y I s t ) ]  v(b+ i,nl(dy) 

> exp[--2fl0N(1)]  Ix exp[--flvN(ojV y[S2)] v(b+l,~(dy) 
((b + 1,hi) 

> exp[ - f l D N -  2flOm(1 ) -- Z] Z~,~?(s~) (3.21) 

Combining (3.20) with (3.21) then gives 

exp I- - p vN(0  v y / s 2 ) ]  

exp[ -fiV'V(Ojw y lsl)] 
~> exp[ - f l D N -  4fllPN(1 ) -- z] 

This completes the proof. 

k e m m a  3.4. Assume n>~c>b+l. For any fl, z>O and N~>2, 
there exists h > 0 independent of n, c, b, s~, and s2 such that 

[-v(b,c]( (b c] ~-(b,.> Is1), ~< �9 r(b;.~('lS2) ] 1--h (3.22) 

ProoL From (3.16) it follows that 

( exp[-flVJ(x[s)] vj(dx)<o~ (3.23) sup 
S E unto JX(J) 

S ~ J ~ O  
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Since exp[--flvN(0j[ t)] = e x p 0 =  1 for any t, 

inf rcN({0j}, t) -- he > 0 (3.24) 
tE U~ 

where we have used the same notation as Lemma 3.3, From the con- 
sistency of the specification {~N} (see Ref. 11), we have 

(3.25) 

From (2.6) and (2.7) it follows that 

f r(b,n] I ~, rC~b,~3({Oj}, S) = {%)uX((b+l,.3).(b,n3trlS)V(b.n3(dy)>/h 2 (3.26) 

where h2 is independent of b, n, and s. From (3.15) 

min[rlb',~](y ] sl ), .(b,n31,(b,naty, S2) ] "  t v~b,nl(dy)>~hlh2- h (3.27) 

Now combining (3.2), (3.12), and (3.27) gives the desired result. 

C o r o l l a r y  3.1. With the same assumptions as in Lemma 3.4, 

(a) c ~ < l - h  for some h > 0  depending only on vN, fl, Z (and not 
S1, S2, b, c, or n). 

(b)  / .  C. v , ' [  . . . .  It ISl) , 'E- , , , ] t  Is2)) 
~< (l __ h) ,~t~(a,b2 t .(a,b3 ~ ~'t'[ . . . .  ] t ' lS1) ' ' [  n.n]t'tS2))+fON(C--b), 

where 0N(') is given by Condition 2.2. 

Proof. Part (a) follows from (3.10) and Lemma 3.4. Part (b) follows 
from (3.9), with identifications given by (3.4) to (3.8), and from 
Lemma 3.2. 

T h e o r e m  3.1. For any fl, z >  0, any interaction V satisfying Con- 
dition 2.1 and Condition 2.2, and any integer N~>2, there is exactly one 
tempered Gibbs state for V N, fl, z. 

Proof. A simple induction argument together with Corollary 3.1(b) 
shows that given any positive integer rn, it is possible to choose n large 
enough so that 

pi t (b ,  c] (. r( b,c] 1. t ' [  . . . .  ]t IS1), iS2)) ~< (1 - -h )  m+l "[--n,n]t  + mf lOm(C - -  b )  (3.28) 

as long as c >/b + 1. Thus given any e > 0, it is possible to choose m large 



One-Dimensional Gibbs States for Slowly Decaying Interactions 217 

enough so that ( 1 - h )  m + l  <e/2, and then to choose c - b  large enough so 
that ratiON(C--b)< e/2 and finally to choose n large enough so that (3.28) 
holds for these choices of m and c -  b. Hence for any sufficiently large 
interval (b, c] and sufficiently large n 

p~(b,c] t. ~(b,c] t. (3.29) 

for alt Sl, sz ~ U u with sl c~ (c, oo ) = s2 ~ (c, oo ). 
Now given any s, t e  U N, let s~ be chosen so that s i n ( c ,  o o ) = s  and 

Sl c~ ( - 0% b] = t. By the triangle inequality 

(b c] ~.(b, el ( P(rEZn,nj('lS), r(b'C2n ( ' I t ) )  ~<~"(b,c] (. E ,~ , ' , ' ~  . . . .  l ,  I s ) , ' E  . . . .  l ,  ts~)) 

n g r ( b , c ]  ( .  j . (b ,c]  ( + ~ , ' E  . . . .  l ,  ts~), I t )  (3.30) " [  --n,n] '~ 

The first term on the side of (3.30) is bounded according to (3.29). 
Similarly, using a relation proved by obvious analogy with (3.29), we can 
conclude that the second term on the right side of (3.30) can be made 
arbitrarily small for sufficiently large c - b  and n. It follows that for (b, c] 
sufficiently large 

lim sup ,,:~(b,c] :. (b.~] rE-.,.~(" X t ) )  = 
n ~ oo 5 , t~  U N 

This guarantees uniqueness of the Gibbs state for V x, fl, z as in Ref. 10. 
Existence was established in Ref. 9 and it is easy to see that any Gibbs state 
corresponding to V N must be tempered. This completes the proof. 

Remark  3.1. The results on high temperature decay of correlations 
given in Ref. 9 holds for the interactions considered here. 

Remark 3.2. For an interaction ~" satisfying Conditions 2.1 and 2.2 
without any hard core, and for any fixed finite volume, the finite volume 
Gibbs states for V N converge to the finite volume Gibbs states for V for 
any boundary condition s ~ U ~, as N ~  oo. One might therefore expect 
that uniqueness of the infinite volume tempered Gibbs state for V would 
follow from the uniqueness of the infinite volume Gibbs state for V N, for 
each _~L Such an argument was given in Ref. 10. The argument is incorrect 
due principally to an incorrect definition of a tempered Gibbs state given 
there. 
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